MODULE wadlmt !!============================================================================== !! *** MODULE wadlmt *** !! compute and apply flux limiters and preserve water depth positivity !! only effects if wetting/drying is on (ln_wd == .true. !!============================================================================== !! History : !! NEMO 3.6 ! 2014-09 ((H.Liu) Original code !! ! will add the runoff and periodic BC case later !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! wad_lmt : Compute the horizontal flux limiter and the limited velocity !! when wetting and drying happens !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce, ONLY : ln_rnf ! surface boundary condition: ocean USE sbcrnf ! river runoff USE cla ! cross land advection (cla_div routine) USE in_out_manager ! I/O manager USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_mpp ! MPP library USE wrk_nemo ! Memory Allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC wad_lmt, wad_lmt_bt ! routine called by step.F90 !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" CONTAINS SUBROUTINE wad_lmt( sshb1, sshemp, z2dt ) !!---------------------------------------------------------------------- !! *** ROUTINE wad_lmt *** !! !! ** Purpose : generate flux limiters for wetting/drying !! !! ** Method : - Prevent negative depth occurring (Not ready for Agrif) !! !! ** Action : - calculate flux limiter and W/D flag !!---------------------------------------------------------------------- REAL(wp), DIMENSION(:,:), INTENT(inout) :: sshb1 REAL(wp), DIMENSION(:,:), INTENT(in) :: sshemp REAL(wp), INTENT(in) :: z2dt ! INTEGER :: ji, jj, jk, jk1 ! dummy loop indices INTEGER :: zflag ! local scalar REAL(wp) :: zcoef, zdep1, zdep2 ! local scalars REAL(wp) :: zzflxp, zzflxn ! local scalars REAL(wp) :: zdepwd ! local scalar, always wet cell depth REAL(wp) :: ztmp ! local scalars REAL(wp), POINTER, DIMENSION(:,:) :: zwdlmtu, zwdlmtv !: W/D flux limiters REAL(wp), POINTER, DIMENSION(:,:) :: zflxp, zflxn ! local 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: zflxu, zflxv ! local 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: zflxu1, zflxv1 ! local 2D workspace !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('wad_lmt') IF(ln_wd) THEN CALL wrk_alloc( jpi, jpj, zflxp, zflxn, zflxu, zflxv, zflxu1, zflxv1 ) CALL wrk_alloc( jpi, jpj, zwdlmtu, zwdlmtv) ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'wad_lmt : wetting/drying limiters and velocity limiting' zflag = 0 zdepwd = 50._wp !maximum depth that ocean cells can have W/D processes zflxp(:,:) = 0._wp zflxn(:,:) = 0._wp zflxu(:,:) = 0._wp zflxv(:,:) = 0._wp zwdlmtu(:,:) = 1._wp zwdlmtv(:,:) = 1._wp ! Horizontal Flux in u and v direction DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji = 1, jpim1 zflxu(ji,jj) = zflxu(ji,jj) + fse3u(ji,jj,jk) * un(ji,jj,jk) * umask(ji,jj,jk) zflxv(ji,jj) = zflxv(ji,jj) + fse3v(ji,jj,jk) * vn(ji,jj,jk) * vmask(ji,jj,jk) END DO END DO END DO zflxu(:,:) = zflxu(:,:) * e2u(:,:) zflxv(:,:) = zflxv(:,:) * e1v(:,:) DO jj = 2, jpjm1 DO ji = 2, jpim1 IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE ! we don't care about land cells IF(bathy(ji,jj) > zdepwd) CYCLE ! and cells which will unlikely go dried out zflxp(ji,jj) = max(zflxu(ji,jj), 0._wp) - min(zflxu(ji-1,jj), 0._wp) + & & max(zflxv(ji,jj), 0._wp) - min(zflxv(ji, jj-1), 0._wp) zflxn(ji,jj) = min(zflxu(ji,jj), 0._wp) - max(zflxu(ji-1,jj), 0._wp) + & & min(zflxv(ji,jj), 0._wp) - max(zflxv(ji, jj-1), 0._wp) zdep2 = bathy(ji,jj) + sshb1(ji,jj) - rn_wdmin1 IF(zdep2 < 0._wp) THEN !add more safty, but not necessary !zdep2 = 0._wp sshb1(ji,jj) = rn_wdmin1 - bathy(ji,jj) END IF ENDDO END DO !! start limiter iterations DO jk1 = 1, nn_wdit + 1 zflxu1(:,:) = zflxu(:,:) * zwdlmtu(:,:) zflxv1(:,:) = zflxv(:,:) * zwdlmtv(:,:) DO jj = 2, jpjm1 DO ji = 2, jpim1 ! wdmask(ji,jj) = 0 IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE IF(bathy(ji,jj) > zdepwd) CYCLE !ztmp = e1t(ji,jj) * e2t(ji,jj) !there must be an array ready for this ztmp = e12t(ji,jj) zzflxp = max(zflxu1(ji,jj), 0._wp) - min(zflxu1(ji-1,jj), 0._wp) + & & max(zflxv1(ji,jj), 0._wp) - min(zflxv1(ji, jj-1), 0._wp) zzflxn = min(zflxu1(ji,jj), 0._wp) - max(zflxu1(ji-1,jj), 0._wp) + & & min(zflxv1(ji,jj), 0._wp) - max(zflxv1(ji, jj-1), 0._wp) zdep1 = (zzflxp + zzflxn) * z2dt / ztmp zdep2 = bathy(ji,jj) + sshb1(ji,jj) - rn_wdmin1 - z2dt * sshemp(ji,jj) ! this one can be moved out of the loop IF(zdep1 > zdep2) THEN zflag = 1 ! wdmask(ji, jj) = 1 zcoef = ( ( zdep2 - rn_wdmin2 ) * ztmp - zzflxn * z2dt ) / ( zflxp(ji,jj) * z2dt ) zcoef = max(zcoef, 0._wp) IF(jk1 > nn_wdit) zcoef = 0._wp IF(zflxu1(ji, jj) > 0._wp) zwdlmtu(ji ,jj) = zcoef IF(zflxu1(ji-1,jj) < 0._wp) zwdlmtu(ji-1,jj) = zcoef IF(zflxv1(ji, jj) > 0._wp) zwdlmtv(ji ,jj) = zcoef IF(zflxv1(ji,jj-1) < 0._wp) zwdlmtv(ji-1,jj) = zcoef END IF END DO ! ji loop END DO ! jj loop CALL lbc_lnk( zwdlmtu, 'U', 1. ) CALL lbc_lnk( zwdlmtv, 'V', 1. ) IF(lk_mpp) CALL mpp_max(zflag) !max over the global domain IF(zflag == 0) EXIT zflag = 0 ! flag indicating if any further iteration is needed? END DO ! jk1 loop DO jk = 1, jpkm1 un(:,:,jk) = un(:,:,jk) * zwdlmtu(:, :) vn(:,:,jk) = vn(:,:,jk) * zwdlmtv(:, :) END DO CALL lbc_lnk( un, 'U', -1. ) CALL lbc_lnk( vn, 'V', -1. ) IF(zflag == 1 .AND. lwp) WRITE(numout,*) 'Need more iterations in wad_lmt!!!' !IF( ln_rnf ) CALL sbc_rnf_div( hdivn ) ! runoffs (update hdivn field) !IF( nn_cla == 1 ) CALL cla_div ( kt ) ! Cross Land Advection (update hdivn field) ! ! CALL wrk_dealloc( jpi, jpj, zflxp, zflxn, zflxu, zflxv, zflxu1, zflxv1 ) CALL wrk_dealloc( jpi, jpj, zwdlmtu, zwdlmtv) ! END IF IF( nn_timing == 1 ) CALL timing_stop('wad_lmt') END SUBROUTINE wad_lmt SUBROUTINE wad_lmt_bt( zflxu, zflxv, sshn_e, zssh_frc, rdtbt ) !!---------------------------------------------------------------------- !! *** ROUTINE wad_lmt *** !! !! ** Purpose : limiting flux in the barotropic stepping (dynspg_ts) !! !! ** Method : - Prevent negative depth occurring (Not ready for Agrif) !! !! ** Action : - calculate flux limiter and W/D flag !!---------------------------------------------------------------------- REAL(wp), INTENT(in) :: rdtbt ! ocean time-step index REAL(wp), DIMENSION(:,:), INTENT(inout) :: zflxu, zflxv, sshn_e, zssh_frc ! INTEGER :: ji, jj, jk, jk1 ! dummy loop indices INTEGER :: zflag ! local scalar REAL(wp) :: z2dt REAL(wp) :: zcoef, zdep1, zdep2 ! local scalars REAL(wp) :: zzflxp, zzflxn ! local scalars REAL(wp) :: zdepwd ! local scalar, always wet cell depth REAL(wp) :: ztmp ! local scalars REAL(wp), POINTER, DIMENSION(:,:) :: zwdlmtu, zwdlmtv !: W/D flux limiters REAL(wp), POINTER, DIMENSION(:,:) :: zflxp, zflxn ! local 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: zflxu1, zflxv1 ! local 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: sum_e3u, sum_e3v ! local 2D workspace !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('wad_lmt_bt') IF(ln_wd) THEN CALL wrk_alloc( jpi, jpj, zflxp, zflxn, zflxu1, zflxv1 ) CALL wrk_alloc( jpi, jpj, zwdlmtu, zwdlmtv) CALL wrk_alloc( jpi, jpj, sum_e3u, sum_e3v) ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'wad_lmt_bt : wetting/drying limiters and velocity limiting' zflag = 0 zdepwd = 50._wp !maximum depth that ocean cells can have W/D processes z2dt = rdtbt zflxp(:,:) = 0._wp zflxn(:,:) = 0._wp !RF bug fix! zflxu(:,:) = 0._wp !RF bug fix! zflxv(:,:) = 0._wp zwdlmtu(:,:) = 1._wp zwdlmtv(:,:) = 1._wp ! Horizontal Flux in u and v direction !RF bug fix zflxu(:,:) = zflxu(:,:) * e2u(:,:) !RF bug fix zflxv(:,:) = zflxv(:,:) * e1v(:,:) DO jj = 2, jpjm1 DO ji = 2, jpim1 IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE ! we don't care about land cells IF(bathy(ji,jj) > zdepwd) CYCLE ! and cells which will unlikely go dried out zflxp(ji,jj) = max(zflxu(ji,jj), 0._wp) - min(zflxu(ji-1,jj), 0._wp) + & & max(zflxv(ji,jj), 0._wp) - min(zflxv(ji, jj-1), 0._wp) zflxn(ji,jj) = min(zflxu(ji,jj), 0._wp) - max(zflxu(ji-1,jj), 0._wp) + & & min(zflxv(ji,jj), 0._wp) - max(zflxv(ji, jj-1), 0._wp) zdep2 = bathy(ji,jj) + sshn_e(ji,jj) - rn_wdmin1 IF(zdep2 < 0._wp) THEN !add more safty, but not necessary !zdep2 = 0._wp sshn_e(ji,jj) = rn_wdmin1 - bathy(ji,jj) END IF ENDDO END DO !! start limiter iterations DO jk1 = 1, nn_wdit + 1 zflxu1(:,:) = zflxu(:,:) * zwdlmtu(:,:) zflxv1(:,:) = zflxv(:,:) * zwdlmtv(:,:) DO jj = 2, jpjm1 DO ji = 2, jpim1 ! wdmask(ji,jj) = 0 IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE ! we don't care about land cells IF(bathy(ji,jj) > zdepwd) CYCLE ! and cells which will unlikely go dried out ztmp = e12t(ji,jj) zzflxp = max(zflxu1(ji,jj), 0._wp) - min(zflxu1(ji-1,jj), 0._wp) + & & max(zflxv1(ji,jj), 0._wp) - min(zflxv1(ji, jj-1), 0._wp) zzflxn = min(zflxu1(ji,jj), 0._wp) - max(zflxu1(ji-1,jj), 0._wp) + & & min(zflxv1(ji,jj), 0._wp) - max(zflxv1(ji, jj-1), 0._wp) zdep1 = (zzflxp + zzflxn) * z2dt / ztmp zdep2 = bathy(ji,jj) + sshn_e(ji,jj) - rn_wdmin1 ! this one can be moved out of the loop zdep2 = zdep2 - z2dt * zssh_frc(ji,jj) IF(zdep1 > zdep2) THEN zflag = 1 !wdmask(ji, jj) = 1 zcoef = ( ( zdep2 - rn_wdmin2 ) * ztmp - zzflxn * z2dt ) / ( zflxp(ji,jj) * z2dt ) zcoef = max(zcoef, 0._wp) IF(jk1 > nn_wdit) zcoef = 0._wp IF(zflxu1(ji, jj) > 0._wp) zwdlmtu(ji ,jj) = zcoef IF(zflxu1(ji-1,jj) < 0._wp) zwdlmtu(ji-1,jj) = zcoef IF(zflxv1(ji, jj) > 0._wp) zwdlmtv(ji ,jj) = zcoef IF(zflxv1(ji,jj-1) < 0._wp) zwdlmtv(ji-1,jj) = zcoef END IF END DO ! ji loop END DO ! jj loop CALL lbc_lnk( zwdlmtu, 'U', 1. ) CALL lbc_lnk( zwdlmtv, 'V', 1. ) IF(lk_mpp) CALL mpp_max(zflag) !max over the global domain IF(zflag == 0) EXIT zflag = 0 ! flag indicating if any further iteration is needed? END DO ! jk1 loop zflxu(:,:) = zflxu(:,:) * zwdlmtu(:, :) zflxv(:,:) = zflxv(:,:) * zwdlmtv(:, :) CALL lbc_lnk( zflxu, 'U', -1. ) CALL lbc_lnk( zflxv, 'V', -1. ) IF(zflag == 1 .AND. lwp) WRITE(numout,*) 'Need more iterations in wad_lmt_bt!!!' !IF( ln_rnf ) CALL sbc_rnf_div( hdivn ) ! runoffs (update hdivn field) !IF( nn_cla == 1 ) CALL cla_div ( kt ) ! Cross Land Advection (update hdivn field) ! ! CALL wrk_dealloc( jpi, jpj, zflxp, zflxn, zflxu1, zflxv1 ) CALL wrk_dealloc( jpi, jpj, zwdlmtu, zwdlmtv) CALL wrk_dealloc( jpi, jpj, sum_e3u, sum_e3v) ! END IF IF( nn_timing == 1 ) CALL timing_stop('wad_lmt') END SUBROUTINE wad_lmt_bt !!====================================================================== END MODULE wadlmt